Center of infinitesimal Cherednik algebras of $\mathfrak {gl}_n$
نویسندگان
چکیده
منابع مشابه
amenability of banach algebras
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
15 صفحه اولRational Cherednik algebras
We survey a number of results about rational Cherednik algebra representation theory and its connection to symplectic singularities and their resolutions. Mathematics Subject Classification (2000). Primary 16G, 17B; Secondary 20C, 53D.
متن کاملMicrolocalization of Rational Cherednik Algebras
We construct a microlocalization of the rational Cherednik algebras H of type Sn. This is achieved by a quantization of the Hilbert scheme Hilb C2 of n points in C2. We then prove the equivalence of the category of H -modules and that of modules over its microlocalization under certain conditions on the parameter.
متن کاملCherednik algebras and Yangians
We construct a functor from the category of modules over the trigonometric (resp. rational) Cherednik algebra of type gll to the category of integrable modules of level l over a Yangian for the loop algebra sln (resp. over a subalgebra of this Yangian called the Yangian deformed double loop algebra) and we establish that it is an equivalence of categories if l + 2 < n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Representation Theory of the American Mathematical Society
سال: 2010
ISSN: 1088-4165
DOI: 10.1090/s1088-4165-10-00363-8